123
77

ProGen: Progressive Zero-shot Dataset Generation via In-context Feedback

Jiacheng Ye
Jiahui Gao
Jiangtao Feng
Zhiyong Wu
Tao Yu
Lingpeng Kong
Abstract

Recently, dataset-generation-based zero-shot learning has shown promising results by training a task-specific model with a dataset synthesized from large pre-trained language models (PLMs). The final task-specific model often achieves compatible or even better performance than PLMs under the zero-shot setting, with orders of magnitude fewer parameters. However, synthetic datasets have their drawbacks. They have long been suffering from low-quality issues (e.g., low informativeness and redundancy). This explains why the massive synthetic data does not lead to better performance -- a scenario we would expect in the human-labeled data. To improve the quality of dataset synthesis, we propose a progressive zero-shot dataset generation framework, ProGen, which leverages the feedback from the task-specific model to guide the generation of new training data via in-context examples. Extensive experiments on five text classification datasets demonstrate the effectiveness of the proposed approach. We also show ProGen achieves on-par or superior performance with only 1\% synthetic dataset size compared to baseline methods without in-context feedback.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.