ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.12326
19
0

Transformer-Based Conditioned Variational Autoencoder for Dialogue Generation

22 October 2022
Huihui Yang
ArXivPDFHTML
Abstract

In human dialogue, a single query may elicit numerous appropriate responses. The Transformer-based dialogue model produces frequently occurring sentences in the corpus since it is a one-to-one mapping function. CVAE is a technique for reducing generic replies. In this paper, we create a new dialogue model (CVAE-T) based on the Transformer with CVAE structure. We use a pre-trained MLM model to rewrite some key n-grams in responses to obtain a series of negative examples, and introduce a regularization term during training to explicitly guide the latent variable in learning the semantic differences between each pair of positive and negative examples. Experiments suggest that the method we design is capable of producing more informative replies.

View on arXiv
Comments on this paper