ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11947
13
8

Generalizing over Long Tail Concepts for Medical Term Normalization

21 October 2022
Beatrice Portelli
Simone Scaboro
Enrico Santus
Hooman Sedghamiz
Emmanuele Chersoni
Giuseppe Serra
    MedIm
ArXivPDFHTML
Abstract

Medical term normalization consists in mapping a piece of text to a large number of output classes. Given the small size of the annotated datasets and the extremely long tail distribution of the concepts, it is of utmost importance to develop models that are capable to generalize to scarce or unseen concepts. An important attribute of most target ontologies is their hierarchical structure. In this paper we introduce a simple and effective learning strategy that leverages such information to enhance the generalizability of both discriminative and generative models. The evaluation shows that the proposed strategy produces state-of-the-art performance on seen concepts and consistent improvements on unseen ones, allowing also for efficient zero-shot knowledge transfer across text typologies and datasets.

View on arXiv
Comments on this paper