ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.11264
22
1

Detecting Backdoors in Deep Text Classifiers

11 October 2022
Youyan Guo
Jun Wang
Trevor Cohn
    SILM
ArXivPDFHTML
Abstract

Deep neural networks are vulnerable to adversarial attacks, such as backdoor attacks in which a malicious adversary compromises a model during training such that specific behaviour can be triggered at test time by attaching a specific word or phrase to an input. This paper considers the problem of diagnosing whether a model has been compromised and if so, identifying the backdoor trigger. We present the first robust defence mechanism that generalizes to several backdoor attacks against text classification models, without prior knowledge of the attack type, nor does our method require access to any (potentially compromised) training resources. Our experiments show that our technique is highly accurate at defending against state-of-the-art backdoor attacks, including data poisoning and weight poisoning, across a range of text classification tasks and model architectures. Our code will be made publicly available upon acceptance.

View on arXiv
Comments on this paper