ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.10975
14
0

Improving Segmentation of Breast Ultrasound Images: Semi Automatic Two Pointers Histogram Splitting Technique

20 October 2022
Rasheed Abid
S. Alam
ArXivPDFHTML
Abstract

Automatically segmenting lesion area in breast ultrasound (BUS) images is a challenging one due to its noise, speckle and artifacts. Edge-map of BUS images also does not help because in most cases the edge-map gives no information whatsoever. Almost all segmentation technique takes the edge-map of the image as its first step, though there are a few algorithms that try to avoid edge-maps as well. Improving the edge-map of breast ultrasound images theoretically improves the chances of automatic segmentation to be more precise. In this paper, we propose a semi-automatic technique of histogram splitting using two pointers. Here the user only has to select two initially guessed points denoting a circle on the region of interest (ROI). The method will automatically study the internal histogram and split it using two pointers. The output BUS image has improved edge-map and ultimately the segmentation on it is better compared to regular segmentation using same algorithm and same initialization. Also, we further processed the edge-map to have less edge-pixels to area ratio, improving the homogeneity and the chances of easy segmentation in the future.

View on arXiv
Comments on this paper