ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08745
22
8

Row-wise LiDAR Lane Detection Network with Lane Correlation Refinement

17 October 2022
Dong-Hee Paek
Kevin Tirta Wijaya
Seung-Hyun Kong
ArXivPDFHTML
Abstract

Lane detection is one of the most important functions for autonomous driving. In recent years, deep learning-based lane detection networks with RGB camera images have shown promising performance. However, camera-based methods are inherently vulnerable to adverse lighting conditions such as poor or dazzling lighting. Unlike camera, LiDAR sensor is robust to the lighting conditions. In this work, we propose a novel two-stage LiDAR lane detection network with row-wise detection approach. The first-stage network produces lane proposals through a global feature correlator backbone and a row-wise detection head. Meanwhile, the second-stage network refines the feature map of the first-stage network via attention-based mechanism between the local features around the lane proposals, and outputs a set of new lane proposals. Experimental results on the K-Lane dataset show that the proposed network advances the state-of-the-art in terms of F1-score with 30% less GFLOPs. In addition, the second-stage network is found to be especially robust to lane occlusions, thus, demonstrating the robustness of the proposed network for driving in crowded environments.

View on arXiv
Comments on this paper