ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.08106
31
7

A Primal-Dual Algorithm for Hybrid Federated Learning

14 October 2022
Tom Overman
Garrett Blum
Diego Klabjan
    FedML
ArXivPDFHTML
Abstract

Very few methods for hybrid federated learning, where clients only hold subsets of both features and samples, exist. Yet, this scenario is extremely important in practical settings. We provide a fast, robust algorithm for hybrid federated learning that hinges on Fenchel Duality. We prove the convergence of the algorithm to the same solution as if the model is trained centrally in a variety of practical regimes. Furthermore, we provide experimental results that demonstrate the performance improvements of the algorithm over a commonly used method in federated learning, FedAvg, and an existing hybrid FL algorithm, HyFEM. We also provide privacy considerations and necessary steps to protect client data.

View on arXiv
Comments on this paper