ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.07762
24
8

Controllable Style Transfer via Test-time Training of Implicit Neural Representation

14 October 2022
Sunwoo Kim
Youngjo Min
Younghun Jung
Seung Wook Kim
ArXivPDFHTML
Abstract

We propose a controllable style transfer framework based on Implicit Neural Representation that pixel-wisely controls the stylized output via test-time training. Unlike traditional image optimization methods that often suffer from unstable convergence and learning-based methods that require intensive training and have limited generalization ability, we present a model optimization framework that optimizes the neural networks during test-time with explicit loss functions for style transfer. After being test-time trained once, thanks to the flexibility of the INR-based model, our framework can precisely control the stylized images in a pixel-wise manner and freely adjust image resolution without further optimization or training. We demonstrate several applications.

View on arXiv
Comments on this paper