ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.07382
16
11

Behavior Cloned Transformers are Neurosymbolic Reasoners

13 October 2022
Ruoyao Wang
Peter Alexander Jansen
Marc-Alexandre Côté
Prithviraj Ammanabrolu
ArXivPDFHTML
Abstract

In this work, we explore techniques for augmenting interactive agents with information from symbolic modules, much like humans use tools like calculators and GPS systems to assist with arithmetic and navigation. We test our agent's abilities in text games -- challenging benchmarks for evaluating the multi-step reasoning abilities of game agents in grounded, language-based environments. Our experimental study indicates that injecting the actions from these symbolic modules into the action space of a behavior cloned transformer agent increases performance on four text game benchmarks that test arithmetic, navigation, sorting, and common sense reasoning by an average of 22%, allowing an agent to reach the highest possible performance on unseen games. This action injection technique is easily extended to new agents, environments, and symbolic modules.

View on arXiv
Comments on this paper