ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.07105
46
78

CORL: Research-oriented Deep Offline Reinforcement Learning Library

13 October 2022
Denis Tarasov
Alexander Nikulin
Dmitry Akimov
Vladislav Kurenkov
Sergey Kolesnikov
    OffRL
ArXivPDFHTML
Abstract

CORL is an open-source library that provides thoroughly benchmarked single-file implementations of both deep offline and offline-to-online reinforcement learning algorithms. It emphasizes a simple developing experience with a straightforward codebase and a modern analysis tracking tool. In CORL, we isolate methods implementation into separate single files, making performance-relevant details easier to recognize. Additionally, an experiment tracking feature is available to help log metrics, hyperparameters, dependencies, and more to the cloud. Finally, we have ensured the reliability of the implementations by benchmarking commonly employed D4RL datasets providing a transparent source of results that can be reused for robust evaluation tools such as performance profiles, probability of improvement, or expected online performance.

View on arXiv
Comments on this paper