ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06404
25
10

Graph Neural Network Surrogate for Seismic Reliability Analysis of Highway Bridge Systems

12 October 2022
Tong Liu
Hadi Meidani
ArXivPDFHTML
Abstract

Rapid reliability assessment of transportation networks can enhance preparedness, risk mitigation, and response management procedures related to these systems. Network reliability analysis commonly considers network-level performance and does not consider the more detailed node-level responses due to computational cost. In this paper, we propose a rapid seismic reliability assessment approach for bridge networks based on graph neural networks, where node-level connectivities, between points of interest and other nodes, are evaluated under probabilistic seismic scenarios. Via numerical experiments on transportation systems in California, we demonstrate the accuracy, computational efficiency, and robustness of the proposed approach compared to the Monte Carlo approach.

View on arXiv
Comments on this paper