ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06368
22
1

Individualized Conditioning and Negative Distances for Speaker Separation

12 October 2022
Tao Sun
Nidal Abuhajar
Shuyu Gong
Zhewei Wang
Charles D. Smith
Xianhui Wang
Li Xu
Jundong Liu
    VLM
ArXivPDFHTML
Abstract

Speaker separation aims to extract multiple voices from a mixed signal. In this paper, we propose two speaker-aware designs to improve the existing speaker separation solutions. The first model is a speaker conditioning network that integrates speech samples to generate individualized speaker conditions, which then provide informed guidance for a separation module to produce well-separated outputs. The second design aims to reduce non-target voices in the separated speech. To this end, we propose negative distances to penalize the appearance of any non-target voice in the channel outputs, and positive distances to drive the separated voices closer to the clean targets. We explore two different setups, weighted-sum and triplet-like, to integrate these two distances to form a combined auxiliary loss for the separation networks. Experiments conducted on LibriMix demonstrate the effectiveness of our proposed models.

View on arXiv
Comments on this paper