ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06362
10
2

A Comparative Study on 1.5T-3T MRI Conversion through Deep Neural Network Models

12 October 2022
Bin Liao
Yani Chen
Zhewei Wang
Charles D. Smith
Jundong Liu
    3DV
    MedIm
ArXivPDFHTML
Abstract

In this paper, we explore the capabilities of a number of deep neural network models in generating whole-brain 3T-like MR images from clinical 1.5T MRIs. The models include a fully convolutional network (FCN) method and three state-of-the-art super-resolution solutions, ESPCN [26], SRGAN [17] and PRSR [7]. The FCN solution, U-Convert-Net, carries out mapping of 1.5T-to-3T slices through a U-Net-like architecture, with 3D neighborhood information integrated through a multi-view ensemble. The pros and cons of the models, as well the associated evaluation metrics, are measured with experiments and discussed in depth. To the best of our knowledge, this study is the first work to evaluate multiple deep learning solutions for whole-brain MRI conversion, as well as the first attempt to utilize FCN/U-Net-like structure for this purpose.

View on arXiv
Comments on this paper