ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.06014
16
0

cuFasterTucker: A Stochastic Optimization Strategy for Parallel Sparse FastTucker Decomposition on GPU Platform

12 October 2022
Zixuan Li
ArXivPDFHTML
Abstract

Currently, the size of scientific data is growing at an unprecedented rate. Data in the form of tensors exhibit high-order, high-dimensional, and highly sparse features. Although tensor-based analysis methods are very effective, the large increase in data size makes the original tensor impossible to process. Tensor decomposition decomposes a tensor into multiple low-rank matrices or tensors that can be exploited by tensor-based analysis methods. Tucker decomposition is such an algorithm, which decomposes a nnn-order tensor into nnn low-rank factor matrices and a low-rank core tensor. However, most Tucker decomposition methods are accompanied by huge intermediate variables and huge computational load, making them unable to process high-order and high-dimensional tensors. In this paper, we propose FasterTucker decomposition based on FastTucker decomposition, which is a variant of Tucker decomposition. And an efficient parallel FasterTucker decomposition algorithm cuFasterTucker on GPU platform is proposed. It has very low storage and computational requirements, and effectively solves the problem of high-order and high-dimensional sparse tensor decomposition. Compared with the state-of-the-art algorithm, it achieves a speedup of around 15X15X15X and 7X7X7X in updating the factor matrices and updating the core matrices, respectively.

View on arXiv
Comments on this paper