ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05991
12
4

Text-Derived Knowledge Helps Vision: A Simple Cross-modal Distillation for Video-based Action Anticipation

12 October 2022
Sayontan Ghosh
Tanvi Aggarwal
Minh Hoai
Niranjan Balasubramanian
    VLM
ArXivPDFHTML
Abstract

Anticipating future actions in a video is useful for many autonomous and assistive technologies. Most prior action anticipation work treat this as a vision modality problem, where the models learn the task information primarily from the video features in the action anticipation datasets. However, knowledge about action sequences can also be obtained from external textual data. In this work, we show how knowledge in pretrained language models can be adapted and distilled into vision-based action anticipation models. We show that a simple distillation technique can achieve effective knowledge transfer and provide consistent gains on a strong vision model (Anticipative Vision Transformer) for two action anticipation datasets (3.5% relative gain on EGTEA-GAZE+ and 7.2% relative gain on EPIC-KITCHEN 55), giving a new state-of-the-art result.

View on arXiv
Comments on this paper