Neural Networks are Decision Trees
- FAtt

Abstract
In this manuscript, we show that any feedforward neural network having piece-wise linear activation functions can be represented as a decision tree. The representation is equivalence and not an approximation, thus keeping the accuracy of the neural network exactly as is. We believe that this work paves the way to tackle the black-box nature of neural networks. We share equivalent trees of some neural networks and show that besides providing interpretability, tree representation can also achieve some computational advantages. The analysis holds both for fully connected and convolutional networks, which may or may not also include skip connections and/or normalizations.
View on arXivComments on this paper