ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.05026
11
4

Uncertainty Quantification in Synthetic Controls with Staggered Treatment Adoption

10 October 2022
M. D. Cattaneo
Yingjie Feng
Filippo Palomba
R. Titiunik
ArXivPDFHTML
Abstract

We propose principled prediction intervals to quantify the uncertainty of a large class of synthetic control predictions (or estimators) in settings with staggered treatment adoption, offering precise non-asymptotic coverage probability guarantees. From a methodological perspective, we provide a detailed discussion of different causal quantities to be predicted, which we call `causal predictands', allowing for multiple treated units with treatment adoption at possibly different points in time. From a theoretical perspective, our uncertainty quantification methods improve on prior literature by (i) covering a large class of causal predictands in staggered adoption settings, (ii) allowing for synthetic control methods with possibly nonlinear constraints, (iii) proposing scalable robust conic optimization methods and principled data-driven tuning parameter selection, and (iv) offering valid uniform inference across post-treatment periods. We illustrate our methodology with an empirical application studying the effects of economic liberalization in the 1990s on GDP for emerging European countries. Companion general-purpose software packages are provided in Python, R and Stata.

View on arXiv
Comments on this paper