The framework of feedback graphs is a generalization of sequential decision-making with bandit or full information feedback. In this work, we study an extension where the directed feedback graph is stochastic, following a distribution similar to the classical Erd\H{o}s-R\ényi model. Specifically, in each round every edge in the graph is either realized or not with a distinct probability for each edge. We prove nearly optimal regret bounds of order (ignoring logarithmic factors), where and are graph-theoretic quantities measured on the support of the stochastic feedback graph with edge probabilities thresholded at . Our result, which holds without any preliminary knowledge about , requires the learner to observe only the realized out-neighborhood of the chosen action. When the learner is allowed to observe the realization of the entire graph (but only the losses in the out-neighborhood of the chosen action), we derive a more efficient algorithm featuring a dependence on weighted versions of the independence and weak domination numbers that exhibits improved bounds for some special cases.
View on arXiv