ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01561
22
3

Causal Intervention-based Prompt Debiasing for Event Argument Extraction

4 October 2022
Jiaju Lin
Jie Zhou
Qin Chen
ArXivPDFHTML
Abstract

Prompt-based methods have become increasingly popular among information extraction tasks, especially in low-data scenarios. By formatting a finetune task into a pre-training objective, prompt-based methods resolve the data scarce problem effectively. However, seldom do previous research investigate the discrepancy among different prompt formulating strategies. In this work, we compare two kinds of prompts, name-based prompt and ontology-base prompt, and reveal how ontology-base prompt methods exceed its counterpart in zero-shot event argument extraction (EAE) . Furthermore, we analyse the potential risk in ontology-base prompts via a causal view and propose a debias method by causal intervention. Experiments on two benchmarks demonstrate that modified by our debias method, the baseline model becomes both more effective and robust, with significant improvement in the resistance to adversarial attacks.

View on arXiv
Comments on this paper