ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.01069
26
15

Dual-former: Hybrid Self-attention Transformer for Efficient Image Restoration

3 October 2022
Sixiang Chen
Tian-Chun Ye
Yun-Peng Liu
Erkang Chen
    ViT
ArXivPDFHTML
Abstract

Recently, image restoration transformers have achieved comparable performance with previous state-of-the-art CNNs. However, how to efficiently leverage such architectures remains an open problem. In this work, we present Dual-former whose critical insight is to combine the powerful global modeling ability of self-attention modules and the local modeling ability of convolutions in an overall architecture. With convolution-based Local Feature Extraction modules equipped in the encoder and the decoder, we only adopt a novel Hybrid Transformer Block in the latent layer to model the long-distance dependence in spatial dimensions and handle the uneven distribution between channels. Such a design eliminates the substantial computational complexity in previous image restoration transformers and achieves superior performance on multiple image restoration tasks. Experiments demonstrate that Dual-former achieves a 1.91dB gain over the state-of-the-art MAXIM method on the Indoor dataset for single image dehazing while consuming only 4.2% GFLOPs as MAXIM. For single image deraining, it exceeds the SOTA method by 0.1dB PSNR on the average results of five datasets with only 21.5% GFLOPs. Dual-former also substantially surpasses the latest desnowing method on various datasets, with fewer parameters.

View on arXiv
Comments on this paper