ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00716
31
57

rPPG-Toolbox: Deep Remote PPG Toolbox

3 October 2022
Xin Liu
Girish Narayanswamy
Akshay Paruchuri
Xiaoyu Zhang
Jiankai Tang
Yuzhe Zhang
Soumyadip Sengupta
Shwetak N. Patel
Yuntao wang
Daniel J. McDuff
ArXivPDFHTML
Abstract

Camera-based physiological measurement is a fast growing field of computer vision. Remote photoplethysmography (rPPG) utilizes imaging devices (e.g., cameras) to measure the peripheral blood volume pulse (BVP) via photoplethysmography, and enables cardiac measurement via webcams and smartphones. However, the task is non-trivial with important pre-processing, modeling, and post-processing steps required to obtain state-of-the-art results. Replication of results and benchmarking of new models is critical for scientific progress; however, as with many other applications of deep learning, reliable codebases are not easy to find or use. We present a comprehensive toolbox, rPPG-Toolbox, that contains unsupervised and supervised rPPG models with support for public benchmark datasets, data augmentation, and systematic evaluation: \url{https://github.com/ubicomplab/rPPG-Toolbox}

View on arXiv
Comments on this paper