ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00712
46
24

PSENet: Progressive Self-Enhancement Network for Unsupervised Extreme-Light Image Enhancement

3 October 2022
Hue Nguyen
Diep Tran
Khoi Duc Minh Nguyen
Rang Nguyen
ArXivPDFHTML
Abstract

The extremes of lighting (e.g. too much or too little light) usually cause many troubles for machine and human vision. Many recent works have mainly focused on under-exposure cases where images are often captured in low-light conditions (e.g. nighttime) and achieved promising results for enhancing the quality of images. However, they are inferior to handling images under over-exposure. To mitigate this limitation, we propose a novel unsupervised enhancement framework which is robust against various lighting conditions while does not require any well-exposed images to serve as the ground-truths. Our main concept is to construct pseudo-ground-truth images synthesized from multiple source images that simulate all potential exposure scenarios to train the enhancement network. Our extensive experiments show that the proposed approach consistently outperforms the current state-of-the-art unsupervised counterparts in several public datasets in terms of both quantitative metrics and qualitative results. Our code is available at https://github.com/VinAIResearch/PSENet-Image-Enhancement.

View on arXiv
Comments on this paper