53
3

EAPruning: Evolutionary Pruning for Vision Transformers and CNNs

Abstract

Structured pruning greatly eases the deployment of large neural networks in resource-constrained environments. However, current methods either involve strong domain expertise, require extra hyperparameter tuning, or are restricted only to a specific type of network, which prevents pervasive industrial applications. In this paper, we undertake a simple and effective approach that can be easily applied to both vision transformers and convolutional neural networks. Specifically, we consider pruning as an evolution process of sub-network structures that inherit weights through reconstruction techniques. We achieve a 50% FLOPS reduction for ResNet50 and MobileNetV1, leading to 1.37x and 1.34x speedup respectively. For DeiT-Base, we reach nearly 40% FLOPs reduction and 1.4x speedup. Our code will be made available.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.