ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00111
22
2

A note on centering in subsample selection for linear regression

30 September 2022
Hai Ying Wang
ArXivPDFHTML
Abstract

Centering is a commonly used technique in linear regression analysis. With centered data on both the responses and covariates, the ordinary least squares estimator of the slope parameter can be calculated from a model without the intercept. If a subsample is selected from a centered full data, the subsample is typically un-centered. In this case, is it still appropriate to fit a model without the intercept? The answer is yes, and we show that the least squares estimator on the slope parameter obtained from a model without the intercept is unbiased and it has a smaller variance covariance matrix in the Loewner order than that obtained from a model with the intercept. We further show that for noninformative weighted subsampling when a weighted least squares estimator is used, using the full data weighted means to relocate the subsample improves the estimation efficiency.

View on arXiv
Comments on this paper