ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2210.00049
22
21

Bayes factor functions for reporting outcomes of hypothesis tests

30 September 2022
V. Johnson
Sandipan Pramanik
Rachael Shudde
ArXiv (abs)PDFHTML
Abstract

Bayes factors represent the ratio of probabilities assigned to data by competing scientific hypotheses. Drawbacks of Bayes factors are their dependence on prior specifications that define null and alternative hypotheses and difficulties encountered in their computation. To address these problems, we define Bayes factor functions (BFF) directly from common test statistics. BFFs depend on a single non-centrality parameter that can be expressed as a function of standardized effect sizes, and plots of BFFs versus effect size provide informative summaries of hypothesis tests that can be easily aggregated across studies. Such summaries eliminate the need for arbitrary P-value thresholds to define ``statistical significance.'' BFFs are available in closed form and can be computed easily from z, t, chi-squared, and F statistics.

View on arXiv
Comments on this paper