ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.14670
19
4

Towards Equalised Odds as Fairness Metric in Academic Performance Prediction

29 September 2022
Jannik Dunkelau
Manh Khoi Duong
    FaML
ArXivPDFHTML
Abstract

The literature for fairness-aware machine learning knows a plethora of different fairness notions. It is however wellknown, that it is impossible to satisfy all of them, as certain notions contradict each other. In this paper, we take a closer look at academic performance prediction (APP) systems and try to distil which fairness notions suit this task most. For this, we scan recent literature proposing guidelines as to which fairness notion to use and apply these guidelines onto APP. Our findings suggest equalised odds as most suitable notion for APP, based on APP's WYSIWYG worldview as well as potential long-term improvements for the population.

View on arXiv
Comments on this paper