62
2

Graph Neural Network Expressivity and Meta-Learning for Molecular Property Regression

Abstract

We demonstrate the applicability of model-agnostic algorithms for meta-learning, specifically Reptile, to GNN models in molecular regression tasks. Using meta-learning we are able to learn new chemical prediction tasks with only a few model updates, as compared to using randomly initialized GNNs which require learning each regression task from scratch. We experimentally show that GNN layer expressivity is correlated to improved meta-learning. Additionally, we also experiment with GNN emsembles which yield best performance and rapid convergence for k-shot learning.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.