ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.13011
18
0

The effectiveness of factorization and similarity blending

16 September 2022
Andrea Pinto
Giacomo Camposampiero
Loic Houmard
Marc Lundwall
ArXivPDFHTML
Abstract

Collaborative Filtering (CF) is a widely used technique which allows to leverage past users' preferences data to identify behavioural patterns and exploit them to predict custom recommendations. In this work, we illustrate our review of different CF techniques in the context of the Computational Intelligence Lab (CIL) CF project at ETH Z\"urich. After evaluating the performances of the individual models, we show that blending factorization-based and similarity-based approaches can lead to a significant error decrease (-9.4%) on the best-performing stand-alone model. Moreover, we propose a novel stochastic extension of a similarity model, SCSR, which consistently reduce the asymptotic complexity of the original algorithm.

View on arXiv
Comments on this paper