ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12766
29
4

EasyRec: An easy-to-use, extendable and efficient framework for building industrial recommendation systems

26 September 2022
Mengli Cheng
Yue Gao
Guoqiang Liu
Hongsheng Jin
Xiaowen Zhang
ArXivPDFHTML
Abstract

We present EasyRec, an easy-to-use, extendable and efficient recommendation framework for building industrial recommendation systems. Our EasyRec framework is superior in the following aspects: first, EasyRec adopts a modular and pluggable design pattern to reduce the efforts to build custom models; second, EasyRec implements hyper-parameter optimization and feature selection algorithms to improve model performance automatically; third, EasyRec applies online learning to fast adapt to the ever-changing data distribution. The code is released: https://github.com/alibaba/EasyRec.

View on arXiv
Comments on this paper