ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12660
17
0

MARLUI: Multi-Agent Reinforcement Learning for Adaptive UIs

26 September 2022
T. Langerak
Sammy Christen
Mert Albaba
Christoph Gebhardt
Otmar Hilliges
    OffRL
ArXivPDFHTML
Abstract

Adaptive user interfaces (UIs) automatically change an interface to better support users' tasks. Recently, machine learning techniques have enabled the transition to more powerful and complex adaptive UIs. However, a core challenge for adaptive user interfaces is the reliance on high-quality user data that has to be collected offline for each task. We formulate UI adaptation as a multi-agent reinforcement learning problem to overcome this challenge. In our formulation, a user agent mimics a real user and learns to interact with a UI. Simultaneously, an interface agent learns UI adaptations to maximize the user agent's performance. The interface agent learns the task structure from the user agent's behavior and, based on that, can support the user agent in completing its task. Our method produces adaptation policies that are learned in simulation only and, therefore, does not need real user data. Our experiments show that learned policies generalize to real users and achieve on par performance with data-driven supervised learning baselines.

View on arXiv
Comments on this paper