ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.12482
14
0

Neural-FacTOR: Neural Representation Learning for Website Fingerprinting Attack over TOR Anonymity

26 September 2022
Haili Sun
Yanzhe Huang
Lansheng Han
Xiang Long
Hongle Liu
Chunjie Zhou
ArXivPDFHTML
Abstract

TOR (The Onion Router) network is a widely used open source anonymous communication tool, the abuse of TOR makes it difficult to monitor the proliferation of online crimes such as to access criminal websites. Most existing approches for TOR network de-anonymization heavily rely on manually extracted features resulting in time consuming and poor performance. To tackle the shortcomings, this paper proposes a neural representation learning approach to recognize website fingerprint based on classification algorithm. We constructed a new website fingerprinting attack model based on convolutional neural network (CNN) with dilation and causal convolution, which can improve the perception field of CNN as well as capture the sequential characteristic of input data. Experiments on three mainstream public datasets show that the proposed model is robust and effective for the website fingerprint classification and improves the accuracy by 12.21% compared with the state-of-the-art methods.

View on arXiv
Comments on this paper