ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.11801
8
5

Solutions to preference manipulation in recommender systems require knowledge of meta-preferences

14 September 2022
Hal Ashton
Matija Franklin
ArXivPDFHTML
Abstract

Iterative machine learning algorithms used to power recommender systems often change people's preferences by trying to learn them. Further a recommender can better predict what a user will do by making its users more predictable. Some preference changes on the part of the user are self-induced and desired whether the recommender caused them or not. This paper proposes that solutions to preference manipulation in recommender systems must take into account certain meta-preferences (preferences over another preference) in order to respect the autonomy of the user and not be manipulative.

View on arXiv
Comments on this paper