48
2
v1v2v3 (latest)

DynaConF: Dynamic Forecasting of Non-Stationary Time Series

Abstract

Deep learning has shown impressive results in a variety of time series forecasting tasks, where modeling the conditional distribution of the future given the past is the essence. However, when this conditional distribution is non-stationary, it poses challenges for these models to learn consistently and to predict accurately. In this work, we propose a new method to model non-stationary conditional distributions over time by clearly decoupling stationary conditional distribution modeling from non-stationary dynamics modeling. Our method is based on a Bayesian dynamic model that can adapt to conditional distribution changes and a deep conditional distribution model that handles multivariate time series using a factorized output space. Our experimental results on synthetic and real-world datasets show that our model can adapt to non-stationary time series better than state-of-the-art deep learning solutions.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.