ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.08180
13
2

Mitigating Filter Bubbles within Deep Recommender Systems

16 September 2022
V. Anand
Matthew Y. R. Yang
Zhanzhan Zhao
ArXivPDFHTML
Abstract

Recommender systems, which offer personalized suggestions to users, power many of today's social media, e-commerce and entertainment. However, these systems have been known to intellectually isolate users from a variety of perspectives, or cause filter bubbles. In our work, we characterize and mitigate this filter bubble effect. We do so by classifying various datapoints based on their user-item interaction history and calculating the influences of the classified categories on each other using the well known TracIn method. Finally, we mitigate this filter bubble effect without compromising accuracy by carefully retraining our recommender system.

View on arXiv
Comments on this paper