53
24

FairGBM: Gradient Boosting with Fairness Constraints

Abstract

Tabular data is prevalent in many high stakes domains, such as financial services or public policy. Gradient boosted decision trees (GBDT) are popular in these settings due to performance guarantees and low cost. However, in consequential decision-making fairness is a foremost concern. Despite GBDT's popularity, existing in-processing Fair ML methods are either inapplicable to GBDT, or incur in significant train time overhead, or are inadequate for problems with high class imbalance -- a typical issue in these domains. We present FairGBM, a dual ascent learning framework for training GBDT under fairness constraints, with little to no impact on predictive performance when compared to unconstrained GBDT. Since observational fairness metrics are non-differentiable, we have to employ a "proxy-Lagrangian" formulation using smooth convex error rate proxies to enable gradient-based optimization. Our implementation shows an order of magnitude speedup in training time when compared with related work, a pivotal aspect to foster the widespread adoption of FairGBM by real-world practitioners.

View on arXiv
Comments on this paper