ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07499
17
0

DiP-GNN: Discriminative Pre-Training of Graph Neural Networks

15 September 2022
Simiao Zuo
Haoming Jiang
Qingyu Yin
Xianfeng Tang
Bing Yin
Tuo Zhao
ArXivPDFHTML
Abstract

Graph neural network (GNN) pre-training methods have been proposed to enhance the power of GNNs. Specifically, a GNN is first pre-trained on a large-scale unlabeled graph and then fine-tuned on a separate small labeled graph for downstream applications, such as node classification. One popular pre-training method is to mask out a proportion of the edges, and a GNN is trained to recover them. However, such a generative method suffers from graph mismatch. That is, the masked graph inputted to the GNN deviates from the original graph. To alleviate this issue, we propose DiP-GNN (Discriminative Pre-training of Graph Neural Networks). Specifically, we train a generator to recover identities of the masked edges, and simultaneously, we train a discriminator to distinguish the generated edges from the original graph's edges. In our framework, the graph seen by the discriminator better matches the original graph because the generator can recover a proportion of the masked edges. Extensive experiments on large-scale homogeneous and heterogeneous graphs demonstrate the effectiveness of the proposed framework.

View on arXiv
Comments on this paper