ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.07031
15
3

A semantic hierarchical graph neural network for text classification

15 September 2022
Shuai Hua
Xinxin Li
Yun Jing
Qu Liu
ArXivPDFHTML
Abstract

The key to the text classification task is language representation and important information extraction, and there are many related studies. In recent years, the research on graph neural network (GNN) in text classification has gradually emerged and shown its advantages, but the existing models mainly focus on directly inputting words as graph nodes into the GNN models ignoring the different levels of semantic structure information in the samples. To address the issue, we propose a new hierarchical graph neural network (HieGNN) which extracts corresponding information from word-level, sentence-level and document-level respectively. Experimental results on several benchmark datasets achieve better or similar results compared to several baseline methods, which demonstrate that our model is able to obtain more useful information for classification from samples.

View on arXiv
Comments on this paper