ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2209.02955
28
29

Semi-supervised Crowd Counting via Density Agency

7 September 2022
Hui Lin
Zhiheng Ma
Xiaopeng Hong
Yao Wang
Zhou Su
    OT
ArXivPDFHTML
Abstract

In this paper, we propose a new agency-guided semi-supervised counting approach. First, we build a learnable auxiliary structure, namely the density agency to bring the recognized foreground regional features close to corresponding density sub-classes (agents) and push away background ones. Second, we propose a density-guided contrastive learning loss to consolidate the backbone feature extractor. Third, we build a regression head by using a transformer structure to refine the foreground features further. Finally, an efficient noise depression loss is provided to minimize the negative influence of annotation noises. Extensive experiments on four challenging crowd counting datasets demonstrate that our method achieves superior performance to the state-of-the-art semi-supervised counting methods by a large margin. Code is available.

View on arXiv
Comments on this paper