ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.14339
16
14

HPPNet: Modeling the Harmonic Structure and Pitch Invariance in Piano Transcription

30 August 2022
Weixing Wei
P. Li
Yi Yu
Wei Li
ArXivPDFHTML
Abstract

While neural network models are making significant progress in piano transcription, they are becoming more resource-consuming due to requiring larger model size and more computing power. In this paper, we attempt to apply more prior about piano to reduce model size and improve the transcription performance. The sound of a piano note contains various overtones, and the pitch of a key does not change over time. To make full use of such latent information, we propose HPPNet that using the Harmonic Dilated Convolution to capture the harmonic structures and the Frequency Grouped Recurrent Neural Network to model the pitch-invariance over time. Experimental results on the MAESTRO dataset show that our piano transcription system achieves state-of-the-art performance both in frame and note scores (frame F1 93.15%, note F1 97.18%). Moreover, the model size is much smaller than the previous state-of-the-art deep learning models.

View on arXiv
Comments on this paper