ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.14049
6
2

An efficient and flexible inference system for serving heterogeneous ensembles of deep neural networks

30 August 2022
Pierrick Pochelu
S. Petiton
B. Conche
ArXivPDFHTML
Abstract

Ensembles of Deep Neural Networks (DNNs) have achieved qualitative predictions but they are computing and memory intensive. Therefore, the demand is growing to make them answer a heavy workload of requests with available computational resources. Unlike recent initiatives on inference servers and inference frameworks, which focus on the prediction of single DNNs, we propose a new software layer to serve with flexibility and efficiency ensembles of DNNs. Our inference system is designed with several technical innovations. First, we propose a novel procedure to find a good allocation matrix between devices (CPUs or GPUs) and DNN instances. It runs successively a worst-fit to allocate DNNs into the memory devices and a greedy algorithm to optimize allocation settings and speed up the ensemble. Second, we design the inference system based on multiple processes to run asynchronously: batching, prediction, and the combination rule with an efficient internal communication scheme to avoid overhead. Experiments show the flexibility and efficiency under extreme scenarios: It successes to serve an ensemble of 12 heavy DNNs into 4 GPUs and at the opposite, one single DNN multi-threaded into 16 GPUs. It also outperforms the simple baseline consisting of optimizing the batch size of DNNs by a speedup up to 2.7X on the image classification task.

View on arXiv
Comments on this paper