19
0

Airway Tree Modeling Using Dual-channel 3D UNet 3+ with Vesselness Prior

Abstract

The lung airway tree modeling is essential to work for the diagnosis of pulmonary diseases, especially for X-Ray computed tomography (CT). The airway tree modeling on CT images can provide the experts with 3-dimension measurements like wall thickness, etc. This information can tremendously aid the diagnosis of pulmonary diseases like chronic obstructive pulmonary disease [1-4]. Many scholars have attempted various ways to model the lung airway tree, which can be split into two major categories based on its nature. Namely, the model-based approach and the deep learning approach. The performance of a typical model-based approach usually depends on the manual tuning of the model parameter, which can be its advantages and disadvantages. The advantage is its don't require a large amount of training data which can be beneficial for a small dataset like medical imaging. On the other hand, the performance of model-based may be a misconcep-tion [5,6]. In recent years, deep learning has achieved good results in the field of medical image processing, and many scholars have used UNet-based methods in medical image segmentation [7-11]. Among all the variation of UNet, the UNet 3+ [11] have relatively good result compare to the rest of the variation of UNet. Therefor to further improve the accuracy of lung airway tree modeling, this study combines the Frangi filter [5] with UNet 3+ [11] to develop a dual-channel 3D UNet 3+. The Frangi filter is used to extracting vessel-like feature. The vessel-like feature then used as input to guide the dual-channel UNet 3+ training and testing procedures.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.