ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.13021
24
0

On Unsupervised Training of Link Grammar Based Language Models

27 August 2022
N. Mikhaylovskiy
    LRM
ArXiv (abs)PDFHTML
Abstract

In this short note we explore what is needed for the unsupervised training of graph language models based on link grammars. First, we introduce the ter-mination tags formalism required to build a language model based on a link grammar formalism of Sleator and Temperley [21] and discuss the influence of context on the unsupervised learning of link grammars. Second, we pro-pose a statistical link grammar formalism, allowing for statistical language generation. Third, based on the above formalism, we show that the classical dissertation of Yuret [25] on discovery of linguistic relations using lexical at-traction ignores contextual properties of the language, and thus the approach to unsupervised language learning relying just on bigrams is flawed. This correlates well with the unimpressive results in unsupervised training of graph language models based on bigram approach of Yuret.

View on arXiv
Comments on this paper