ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.12208
25
44

Contrastive Audio-Language Learning for Music

25 August 2022
Ilaria Manco
Emmanouil Benetos
Elio Quinton
Gyorgy Fazekas
ArXivPDFHTML
Abstract

As one of the most intuitive interfaces known to humans, natural language has the potential to mediate many tasks that involve human-computer interaction, especially in application-focused fields like Music Information Retrieval. In this work, we explore cross-modal learning in an attempt to bridge audio and language in the music domain. To this end, we propose MusCALL, a framework for Music Contrastive Audio-Language Learning. Our approach consists of a dual-encoder architecture that learns the alignment between pairs of music audio and descriptive sentences, producing multimodal embeddings that can be used for text-to-audio and audio-to-text retrieval out-of-the-box. Thanks to this property, MusCALL can be transferred to virtually any task that can be cast as text-based retrieval. Our experiments show that our method performs significantly better than the baselines at retrieving audio that matches a textual description and, conversely, text that matches an audio query. We also demonstrate that the multimodal alignment capability of our model can be successfully extended to the zero-shot transfer scenario for genre classification and auto-tagging on two public datasets.

View on arXiv
Comments on this paper