LIVEJoin the current RTAI Connect sessionJoin now

45
7

Learning Task-Oriented Flows to Mutually Guide Feature Alignment in Synthesized and Real Video Denoising

Abstract

Video denoising aims at removing noise from videos to recover clean ones. Some existing works show that optical flow can help the denoising by exploiting the additional spatial-temporal clues from nearby frames. However, the flow estimation itself is also sensitive to noise, and can be unusable under large noise levels. To this end, we propose a new multi-scale refined optical flow-guided video denoising method, which is more robust to different noise levels. Our method mainly consists of a denoising-oriented flow refinement (DFR) module and a flow-guided mutual denoising propagation (FMDP) module. Unlike previous works that directly use off-the-shelf flow solutions, DFR first learns robust multi-scale optical flows, and FMDP makes use of the flow guidance by progressively introducing and refining more flow information from low resolution to high resolution. Together with real noise degradation synthesis, the proposed multi-scale flow-guided denoising network achieves state-of-the-art performance on both synthetic Gaussian denoising and real video denoising. The codes will be made publicly available.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.