Wildfires are increasingly impacting the environment, human health and
safety. Among the top 20 California wildfires, those in 2020-2021 burned more
acres than the last century combined. California's 2018 wildfire season caused
damages of 148.5billion.Amongmillionsofimpactedpeople,thoselivingwithdisabilities(around15impactedduetoinadequatemeansofalerts.Inthisproject,amulti−modalwildfirepredictionandpersonalizedearlywarningsystemhasbeendevelopedbasedonanadvancedmachinelearningarchitecture.SensordatafromtheEnvironmentalProtectionAgencyandhistoricalwildfiredatafrom2012to2018havebeencompiledtoestablishacomprehensivewildfiredatabase,thelargestofitskind.Next,anovelU−Convolutional−LSTM(LongShort−TermMemory)neuralnetworkwasdesignedwithaspecialarchitectureforextractingkeyspatialandtemporalfeaturesfromcontiguousenvironmentalparametersindicativeofimpendingwildfires.Environmentalandmeteorologicalfactorswereincorporatedintothedatabaseandclassifiedasleadingindicatorsandtrailingindicators,correlatedtorisksofwildfireconceptionandpropagationrespectively.Additionally,geologicaldatawasusedtoprovidebetterwildfireriskassessment.Thisnovelspatio−temporalneuralnetworkachieved>97vs.around76predicting2018′sfivemostdevastatingwildfires5−14daysinadvance.Finally,apersonalizedearlywarningsystem,tailoredtoindividualswithsensorydisabilitiesorrespiratoryexacerbationconditions,wasproposed.Thistechniquewouldenablefiredepartmentstoanticipateandpreventwildfiresbeforetheystrikeandprovideearlywarningsforat−riskindividualsforbetterpreparation,therebysavinglivesandreducingeconomicdamages.