43
2
v1v2 (latest)

Neural Embeddings for Text

Abstract

We propose a new kind of embedding for natural language text that deeply represents semantic meaning. Standard text embeddings use the outputs from hidden layers of a pretrained language model. In our method, we let a language model learn from the text and then literally pick its brain, taking the actual weights of the model's neurons to generate a vector. We call this representation of the text a neural embedding. We confirm the ability of this representation to reflect semantics of the text by an analysis of its behavior on several datasets, and by a comparison of neural embedding with state of the art sentence embeddings.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.