ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.07675
9
7

Enhancement to Training of Bidirectional GAN : An Approach to Demystify Tax Fraud

16 August 2022
P. Mehta
Sandeep Kumar
Ravi Kumar
C. Babu
ArXivPDFHTML
Abstract

Outlier detection is a challenging activity. Several machine learning techniques are proposed in the literature for outlier detection. In this article, we propose a new training approach for bidirectional GAN (BiGAN) to detect outliers. To validate the proposed approach, we train a BiGAN with the proposed training approach to detect taxpayers, who are manipulating their tax returns. For each taxpayer, we derive six correlation parameters and three ratio parameters from tax returns submitted by him/her. We train a BiGAN with the proposed training approach on this nine-dimensional derived ground-truth data set. Next, we generate the latent representation of this data set using the encoderencoderencoder (encode this data set using the encoderencoderencoder) and regenerate this data set using the generatorgeneratorgenerator (decode back using the generatorgeneratorgenerator) by giving this latent representation as the input. For each taxpayer, compute the cosine similarity between his/her ground-truth data and regenerated data. Taxpayers with lower cosine similarity measures are potential return manipulators. We applied our method to analyze the iron and steel taxpayers data set provided by the Commercial Taxes Department, Government of Telangana, India.

View on arXiv
Comments on this paper