ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.06216
24
8

Is Your Model Sensitive? SPeDaC: A New Benchmark for Detecting and Classifying Sensitive Personal Data

12 August 2022
Gaia Gambarelli
Aldo Gangemi
Rocco Tripodi
ArXivPDFHTML
Abstract

In recent years, there has been an exponential growth of applications, including dialogue systems, that handle sensitive personal information. This has brought to light the extremely important issue of personal data protection in virtual environments. Sensitive Information Detection (SID) approaches different domains and languages in literature. However, if we refer to the personal data domain, a shared benchmark or the absence of an available labeled resource makes comparison with the state-of-the-art difficult. We introduce and release SPeDaC , a new annotated resource for the identification of sensitive personal data categories in the English language. SPeDaC enables the evaluation of computational models for three different SID subtasks with increasing levels of complexity. SPeDaC 1 regards binary classification, a model has to detect if a sentence contains sensitive information or not; whereas, in SPeDaC 2 we collected labeled sentences using 5 categories that relate to macro-domains of personal information; in SPeDaC 3, the labeling is fine-grained (61 personal data categories). We conduct an extensive evaluation of the resource using different state-of-the-art-classifiers. The results show that SPeDaC is challenging, particularly with regard to fine-grained classification. The transformer models achieve the best results (acc. RoBERTa on SPeDaC 1 = 98.20%, DeBERTa on SPeDaC 2 = 95.81% and SPeDaC 3 = 77.63%).

View on arXiv
Comments on this paper