ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.03879
19
5

Clear Memory-Augmented Auto-Encoder for Surface Defect Detection

8 August 2022
Wei Luo
Tongzhi Niu
Lixin Tang
Wenyong Yu
Bin Li
ArXivPDFHTML
Abstract

In surface defect detection, due to the extreme imbalance in the number of positive and negative samples, positive-samples-based anomaly detection methods have received more and more attention. Specifically, reconstruction-based methods are the most popular. However, existing methods are either difficult to repair abnormal foregrounds or reconstruct clear backgrounds. Therefore, we propose a clear memory-augmented auto-encoder (CMA-AE). At first, we propose a novel clear memory-augmented module (CMAM), which combines the encoding and memoryencoding in a way of forgetting and inputting, thereby repairing abnormal foregrounds and preserving clear backgrounds. Secondly, a general artificial anomaly generation algorithm (GAAGA) is proposed to simulate anomalies that are as realistic and feature-rich as possible. At last, we propose a novel multi scale feature residual detection method (MSFR) for defect segmentation, which makes the defect location more accurate. Extensive comparison experiments demonstrate that CMA-AE achieves state-of-the-art detection accuracy and shows great potential in industrial applications.

View on arXiv
Comments on this paper