ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2208.02205
31
41

Large-scale Building Damage Assessment using a Novel Hierarchical Transformer Architecture on Satellite Images

3 August 2022
Navjot Kaur
Cheng-Chun Lee
Ali Mostafavi
Ali Mahdavi-Amiri
ArXivPDFHTML
Abstract

This paper presents \dahitra, a novel deep-learning model with hierarchical transformers to classify building damages based on satellite images in the aftermath of natural disasters. Satellite imagery provides real-time and high-coverage information and offers opportunities to inform large-scale post-disaster building damage assessment, which is critical for rapid emergency response. In this work, a novel transformer-based network is proposed for assessing building damage. This network leverages hierarchical spatial features of multiple resolutions and captures the temporal differences in the feature domain after applying a transformer encoder on the spatial features. The proposed network achieves state-of-the-art performance when tested on a large-scale disaster damage dataset (xBD) for building localization and damage classification, as well as on LEVIR-CD dataset for change detection tasks. In addition, this work introduces a new high-resolution satellite imagery dataset, Ida-BD (related to 2021 Hurricane Ida in Louisiana in 2021) for domain adaptation. Further, it demonstrates an approach of using this dataset by adapting the model with limited fine-tuning and hence applying the model to newly damaged areas with scarce data.

View on arXiv
Comments on this paper